2022 年度 奨学生入学試験

数学

(試験時間 60分)

I 注 意 事 項

- 1 試験開始の合図があるまで、この問題冊子の中を見てはいけません。
- 2 この問題冊子は,25ページあります。出題科目,ページ及び選択方法は,下 表のとおりです。

出	題科目	ページ	選択方法
数学①	数学 I・数学 A	3 ~ 13	数学①もしくは数学②のどちらか1科目を選択して解答しなさい。 ただし、教育学部初等教育課程
数学 ②	数学Ⅰ・数学A 数学Ⅱ・数学B	15 ~ 25	を志願し、文系型で数学を受験する者は 数学①を 、理系型で数学を受験する者は 数学②を必ず受験すること 。

- 3 試験中に問題冊子の印刷不鮮明,ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を挙げて監督者に知らせなさい。
- 4 解答用紙には解答欄以外に次の記入欄があるので、それぞれ正しく記入し、マークしなさい。
 - ① 試験コード欄・座席番号欄 試験コード・座席番号(数字)を記入し、さらにその下のマーク欄にマークしなさい。正しくマークされていない場合は、採点できないことがあります。
 - ② 氏名欄 氏名・フリガナを記入しなさい。
 - ③ 解答科目欄

解答する科目を一つ選び、科目名の右の〇にマークしなさい。マークされていない場合又は複数の科目にマークされている場合は、0点となります。

- 5 問題冊子の余白等は適官利用してよいが、どのページも切り離してはいけません。
- 6 試験終了後、問題冊子は持ち帰りなさい。

裏表紙へ続く、裏表紙も必ず読むこと。

Ⅱ 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。

例 アイウ に-35 と答えたいとき

ア		\oplus	0	1	2	3	4	⑤	6	7	8	9
1	Θ	\oplus	0	1	2		4	⑤	6	7	8	9
ウ	Θ	\oplus	0	1	2	3	4	•	6	0	8	9

3 分数形で解答する場合,分数の符号は分子につけ、分母につけてはいけません。

例えば、 $\frac{\boxed{\mathtt{z}}}{\boxed{\mathtt{b}}}$ に $-\frac{2}{3}$ と答えたいときは、 $\frac{-2}{3}$ として答えなさい。

また、それ以上約分できない形で答えなさい。

例えば、 $\frac{1}{2}$ と答えるところを、 $\frac{2}{4}$ のように答えてはいけません。

4 小数の形で解答する場合,指定された桁数の一つ下の桁を四捨五入して答えな さい。また,必要に応じて,指定された桁まで**②**にマークしなさい。

例えば、 **キ** . **クケ** に 4.5 と答えたいときは、 4.50 として答えなさい。

5 根号を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答え なさい。

例えば, \Box $\sqrt{\Box}$ ψ に $6\sqrt{2}$ と答えるところを, $3\sqrt{8}$ のように答えてはいけません。

- 6 根号を含む分数形で解答する場合,例えば $\frac{2}{3}$ と答えるところを, $\frac{2+4\sqrt{2}}{6}$ や $\frac{2+2\sqrt{8}}{6}$ のように答えてはいけません。
- 7 問題の文中の二重四角で表記された **タ** などには、選択肢から一つを選 んで、答えなさい。
- 8 同一の問題文中に チツ , テ などが2度以上現れる場合, 原則として,2度目以降は, チツ , テ のように細字で表記します。

数学2 $\begin{bmatrix} \text{数学 I} \cdot \text{数学 A} \\ \text{数学 II} \cdot \text{数学 B} \end{bmatrix}$

数学①もしくは数学②のどちらか 1 科目を選択して解答しなさい。 教育学部 初等教育課程を志願し、文系型で数学を受験する者は数学 ①を、理系型で数学を受験する者は数学②を必ず受験すること。

解答用紙の解答科目欄に解答する科目を必ずマークすること。

数学② 〔数学 I · 数学 A 数学 II · 数学 B

第1問

(1) $\frac{1}{\sqrt{5}-2}$ の整数部分をA, 小数部分をBとおく。このとき

$$A = \boxed{P}$$

$$A^2 + AB + A + B =$$
 イウ $+$ エ $\sqrt{$ オ

- - ② $(a-1)^2 + (b-2)^2 + (c-6)^2 = 0$ であることは、a+b+c=9 であるための + 。
 - ◎ 必要十分条件である
 - ① 必要条件であるが、十分条件ではない
 - 2 十分条件であるが、必要条件ではない
 - ③ 必要条件でも十分条件でもない
- (3) a を実数の定数とする。不等式 (x a + 1)(x + 2) < 0 が整数解をちょうど 二つだけもつような a の値の範囲は

数学②

(4) 等比数列 {a_n} は、初項が 2 であり

$$a_1 + a_2 + a_3 = 86$$

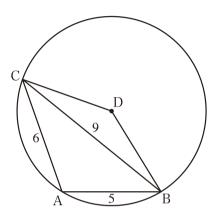
を満たす。このとき、 $\{a_n\}$ の公比は $\boxed{ \mathbf{v} }$ または $\boxed{\mathbf{y}\mathbf{y} }$ である。

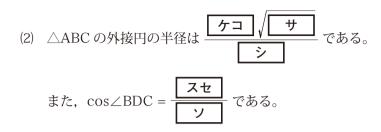
(5) 曲線 $y = x^3 - x^2 + 1$ と直線 y = 2x + 1 で囲まれた図形の面積は テトである。

数学②

第2問

 \triangle ABC において、AB = 5、BC = 9、CA = 6 であるとする。また、 \triangle ABC の外接円の中心を D とする。





(3) 線分 BC の中点を M とする。△ABC の外接円と直線 AM の交点のうち,

また、 $\triangle BDC$ の外接円の中心を E とする。 このとき、 $\frac{EM}{MD} = \frac{\blacksquare}{\blacksquare}$ である。

数学(2)

第3問

2 次関数 $f(x) = x^2 - 6x + 8$ を考える。t を正の実数とし, $-t - 1 \le x \le 2t$ に おける f(x) の最小値を m. 最大値を M とする。

- (2) *m*, *M* をそれぞれ *t* を用いて表すと

$$M = \begin{cases} t^2 + \boxed{\flat} t + \boxed{\gimel} & (0 < t \leq \boxed{\jmath}) \\ \boxed{\jmath} t^2 - \boxed{\jmath} t + \boxed{\jmath} & (\boxed{\jmath} < t) \end{cases}$$

(3) $25 \le M - m \le 36$ となる t の値の範囲は

$$\frac{ \boxed{ \boxed{ \ \ \, } \ \ \, } \ \ \, | \ \ \, }{ \boxed{ \ \ \, | \ \ \, } \ \ \, } \leq t \leq \boxed{ \ \ \, }$$

第4問

四面体 OABC の辺 AB上に,辺 ABを 9:2 に内分する点 D をとる。また,面 OAB上の点 E は,線分 OD を 11:9 に内分する。 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ とする。

(1) \overrightarrow{OE} を \overrightarrow{a} , \overrightarrow{b} で表すと

$$\overrightarrow{OE} = \frac{\overrightarrow{P}}{\boxed{1}} \overrightarrow{a} + \frac{\overrightarrow{I}}{\boxed{1}} \overrightarrow{b}$$

である。

(2) \triangle OBC の重心を G とし、直線 AG と平面 OEC の交点を P とする。 \overrightarrow{OP} を \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} で表すと

$$\overrightarrow{OP} = \frac{\ddagger}{77} \overrightarrow{a} + \frac{3}{79} \overrightarrow{b} + \frac{3}{79} \overrightarrow{c}$$

(3) 点 E から辺 O A, O B にそれぞれ垂線 E M, E N を下ろすと, 点 M, N はそれぞれ辺 O A, O B の中点となった。 \overrightarrow{EM} , \overrightarrow{EN} を \overrightarrow{a} , \overrightarrow{b} で表すと

である。このことから、線分 OA と OB の長さの比を分数で表すと

$$\frac{OA}{OB} = \frac{\lambda}{J}$$

であり、 $\frac{\rightarrow}{a}$ と $\frac{\rightarrow}{b}$ のなす角を θ とおくと

$$\cos \theta = \frac{N}{|E|}$$