2022年度 一般入学試験 後期日程

地理歴史・公民・理科 [世界史B, 日本史B, 政治・経済] 物理基礎・化学基礎・生物基礎]

(試験時間 60分)

この問題冊子には、「世界史B」「日本史B」「政治・経済」の3科目及び「理科(物理基礎・化学基礎・生物基礎)」を掲載しています。解答する科目を間違えないように選択しなさい。

注 意 事 項

- 1 試験開始の合図があるまで、この問題冊子の中を見てはいけません。
- 2 この注意事項は、問題冊子の裏表紙にも続きます。問題冊子を裏返して必ず読み なさい。ただし、問題冊子を開いてはいけません。
- 3 この問題冊子は、121ページあります。出題科目、ページ及び選択方法は、下表のとおりです。

	出 題 科 目	ページ	選択方法
地理歴史	世界史B	4 ∼ 27	
歴史・	日本史 B	28 ~ 51	
公民	政治・経済	52 ~ 77) 8.
理科	物理基礎・化学基礎・ 生物基礎	79 ~ 121	試験時間内に左の3科 目のうち 2科目を選択し て 解答する。

- 4 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に気付いた場合は、手を挙げて監督者に知らせなさい。
- 5 「地理歴史・公民」の科目を選択する者は「**地理歴史・公民解答用紙**」を,「理科」 の科目を選択する者は「**理科解答用紙**」を使用しなさい。

「理科」は解答用紙1枚で2科目を解答します。解答の順番は問いません。解答時間(60分)の配分は自由です。

裏表紙へ続く、裏表紙も必ず読むこと。

- 6 解答用紙には解答欄以外に次の記入欄があるので、それぞれ正しく記入し、マークしなさい。
 - ① 試験コード欄・座席番号欄 試験コード・座席番号(数字)を記入し、さらにその下のマーク欄にマークしなさい。正しくマークされていない場合は、採点できないことがあります。
 - ② 氏名欄 氏名・フリガナを記入しなさい。
 - ③ 解答科目欄

解答する科目を一つ選び、科目名の右の〇にマークしなさい。マークされていない場合又は複数の科目にマークされている場合は、O点となります。

7 解答は、解答用紙の解答欄にマークしなさい。例えば、 10 と表示のある問いに対して③と解答する場合は、次の(例)のように解答番号10の解答欄の③にマークしなさい。

(例)	解答 番号		解		答		欄				
	10	1	2		4	6	6	0	8	9	0

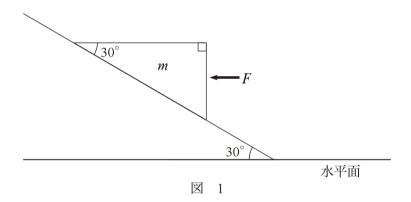
- 8 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。
- 9 試験終了後、問題冊子は持ち帰りなさい。

理 科 (物理基礎・化学基礎・生物基礎)

試験時間内に下記の3科目のうち2科目を選択して解答すること。

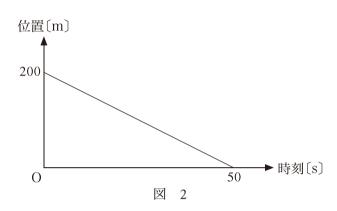
出題科目	ページ
物理基礎	80 ~ 93
化 学 基 礎	94 ~ 103
生物基礎	104 ~ 121

「理科」は解答用紙1枚で2科目を解答します。解答の順番は問いません。解答時間(60分)の配分は自由です。


(注) 理科を選択した者は、**試験時間内に「物理基礎」「化学基礎」「生物基礎」のうち2科目を選択して解答する**こと。

物理基礎

(解答番号 1 ∼ 13


第1問 次の問い(問1~5)に答えよ。

問1 図1のように、水平面となす角度が 30°のなめらかな斜面上に、30°の角度をもつ質量mの断面が直角三角形の三角柱を置き、水平方向に大きさFの力を加えて静止させた。Fを表す式として正しいものを、下の $\mathbf{0}$ ~ $\mathbf{6}$ のうちから一つ選べ。ただし、重力加速度の大きさをgとする。 $F = \boxed{1}$

- $3 \quad \frac{1}{2} mg$

問2 図 2 は、直線上を運動する質量 10 kg の物体の位置[m] と時刻[s] の関係を グラフにしたものである。この物体の時刻 20 s における運動エネルギーは何 J か。最も適当な数値を、下の $\mathbf{0}$ ~ $\mathbf{6}$ のうちから一つ選べ。 $\boxed{\mathbf{2}}$ $\boxed{\mathbf{J}}$

- 0 160
- (2) -80

3 -20

4 20

⑤ 80

6 160

- 問3 エネルギーに関する記述として最も適当なものを、次の \bigcirc ~ \bigcirc のうちから一つ選べ。 3

 - ② 動摩擦力によって生じた熱エネルギーは、運動エネルギーに変換することができる。
 - ③ 気体の内部エネルギーが増加すると、気体分子がもつ運動エネルギーも増加する。
 - **④** 1gのプルトニウムが核分裂するときに生じるエネルギーは,1gの石油が燃焼するときに生じるエネルギーと等しい。
 - **⑤** 発電所から送り出されるエネルギーは、送電線を通って市街地に届くエネルギーと等しい。

問 4	・ 次の文章中の空欄
	当なものを、下の①~⑧のうちから一つ選べ。 4
	水面上を波が正弦波として伝わるとする。ある地点をその波の山が伝わって
	から次の山が伝わるまでの時間間隔は波の ア であり、山の位置に落ち
	葉を浮かべると、アの時間の間に落ち葉は山の位置からイ。また、
	波の伝わる速さを山から隣の山までの間隔で割ったものが波の ウとな
	る。ただし、正弦波の山から隣の山までの間隔は落ち葉の大きさと比べて十分
	に大きいものとする。

	ア	1	ウ
0	周期	隣の山に移動する	振動数
2	周期	移動しない	振動数
3	周期	隣の山に移動する	周期
4	周期	移動しない	周期
6	振動数	隣の山に移動する	振動数
6	振動数	移動しない	振動数
Ø	振動数	隣の山に移動する	周期
8	振動数	移動しない	周期

問 5	次の文章中の空欄 エ ~ カ に入れる語の	組合せと	として最も適当
	なものを、下の①~⑧のうちから一つ選べ。 5		
	· · · · · · · · · · · · · · · · · · ·		
	原子の中には、原子核が不安定であるために、自ら	エ	線を出して別
	の原子核に変わっていくものがある。このような現象を	オ	という。また,
	エ 線を出す性質を エ 能といい、1 秒間に	オ	する原子核の
	数でその強さを表し, カという単位を用いる。		

	I	オ	カ
0	紫外	崩壊	ベクレル(Bq)
2	紫外	崩壊	シーベルト(Sv)
3	紫外	核融合	ベクレル(Bq)
4	紫外	核融合	シーベルト(Sv)
6	放 射	崩壊	ベクレル(Bq)
6	放 射	崩壊	シーベルト(Sv)
0	放 射	核融合	ベクレル(Bq)
8	放射	核融合	シーベルト(Sv)

(下書き用紙)

物理基礎の試験問題は次に続く。

第2問 次の文章(A・B)を読み,下の問い(問1~4)に答えよ。

A 時刻 t=0 s における波形が図1のような、x軸に沿って伝わる正弦波を考える。x軸は媒質の位置x [m]を表し、y軸は媒質の変位y [m]を表している。また、図 2 はある位置での媒質の変位の時間変化を表している。

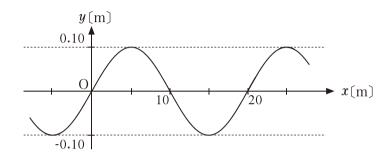


図 1

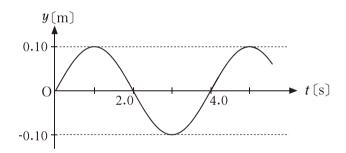


図 2

				•		きに最大となる一つ選べ。 $x = $		_
	1	2.5	2	5.0	3	7.5	4	10
	6	12.5	6	15	7	17.5	8	20
問 2	y 軸 のほ のコ	の正の向きの変 持間変化を表する	だ位と とき,	こして考える。 $oxed{B}$ 時刻 $t=2.0\mathrm{s}$ る位置 x は何 m	【2 t にお	媒質の x 軸の正 が位置 $x=10$ m ぶいて,媒質の振 最も適当な数値	での)媒質の変位)速さが x 軸
	n	2.5	മ	5.0	മ	7.5	a	10

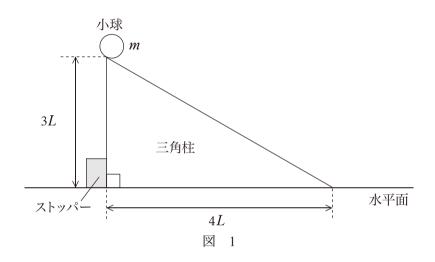
⑤ 12.5 **⑥** 15 **⑦** 17.5 **⑧** 20

問1 図 2 が位置 x = 0 m での媒質の変位の時間変化を表すとき、時刻 t = 2.0 s

В	導体を流れる直流電流について考える	0
$\boldsymbol{\mathcal{L}}$		С

問 3	導線に	3.0 A	の電流を 5.0 🤈	分間流した。	この間に	に導線のある	る断面を通	過し
	た電気量	の大き	さは何Cか。	最も適当な	数値を,	次の①~(う のうちか	ら一
	つ選べ。	8] C					

1	15	2	150	3	180
4	450	6	600	6	900


1	25	2	40	3	80
4	100	6	150	6	250

(下書き用紙)

物理基礎の試験問題は次に続く。

第3問 次の文章(A・B)を読み,下の問い(問1~4)に答えよ。

A 図1のように、なめらかな水平面上に高さ 3L、横幅 4L の三角柱を置き、左側にストッパーを設置した。三角柱の上端に質量 m の小球を置き、静かに放した後の運動を考える。ただし、重力加速度の大きさを g とし、小球と三角柱の斜面との間に摩擦ははたらかないものとする。

- **問1** 小球を静かに放してから水平面に達するまでにかかる時間 t を表す式とし て正しいものを、次の \bigcirc ~ \bigcirc のうちから一つ選べ。 $t=\boxed{10}$
 - $0 \quad \sqrt{\frac{5L}{3q}}$
- 3 $5\sqrt{\frac{L}{2q}}$

- § $5\sqrt{\frac{3L}{2g}}$
- 問2 小球が三角柱の斜面上を運動しているとき、ストッパーが三角柱から受け る力の大きさを表す式として正しいものを、次の①~⑥のうちから一つ選べ。
 - ① $\frac{9}{25} mg$ ② $\frac{12}{25} mg$

B 図 2 のように、軽いばねの一端を水平面に固定し、他端に質量 m の物体を取り付けて、物体の上面に軽い糸を取り付けた。糸の張力の大きさが 0 であるとき、ばねは自然の長さから a だけ縮んでいた。ただし、糸、物体、ばねは常に鉛直方向のみに運動するものとする。また、重力加速度の大きさを g とする。

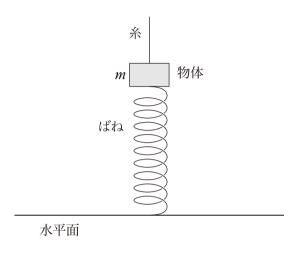


図 2

問3 糸の張力の大きさが 2mg であるとき、物体は静止していた。このとき、ばねに蓄えられた弾性エネルギーを表す式として正しいものを、次の \bigcirc ~ \bigcirc のうちから一つ選べ。 12

- $3 \quad \frac{1}{2} mga$

- **6** mga

問4 問3 の状態で静かに糸を切ると、物体は鉛直方向に運動を始めた。ばねが自然の長さになったときの物体の速さvを表す式として正しいものを、次の $\mathbf{0}$ ~ $\mathbf{6}$ のうちから一つ選べ。ただし、切断した糸は物体の運動に影響を与えないものとする。 $v=\boxed{13}$

- $0 \quad \frac{1}{2} \sqrt{ga}$
- $\Im \sqrt{\frac{1}{2}ga}$

- $\oint \sqrt{ga}$
- $6 \sqrt{3ga}$